Metastructure with integrated internal oscillators of constant, linearly and nonlinearly varying natural frequency

نویسندگان

چکیده

This research focuses on the analysis of model and performance lightweight metastructures encompassing a distributed array internal homogenous oscillators, integrated into host structure to create single-piece element. metastructure performs longitudinal vibrations, whose axis is colinear with direction transverse vibration oscillators. First, mechanical models separate elements as whole are created considered. The first modal frequencies vibrations blocked free oscillators tuned frequency one oscillator, yielding optimal number for this be achieved, which new result proposed design. theoretical then checked experimentally produced by 3D printing technology, comprising different all have same natural frequency. Besides validating results, experimental investigations freely vibrating constant used explore other characteristics, such width regions where reduced amplitude achieved. Finally, based additional numerical modified in two ways, an original approach: their increased linearly nonlinearly along accordance previous results. benefits redesigns multi-modal characteristics discussed.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonlinearly coupled harmonic oscillators: high frequency oscillations yield synchronization

Synchronization of coupled harmonic oscillators is investigated. Coupling considered here is pairwise, unidirectional, and described by a nonlinear function (whose graph resides in the first and third quadrants) of some projection of the relative distance (between the states of the pair being coupled) vector. Under the assumption that the interconnection topology defines a connected graph, it i...

متن کامل

Time-periodic phases in populations of nonlinearly coupled oscillators with bimodal frequency distributions

The mean field Kuramoto model describing the synchronization of a population of phase oscillators with a bimodal frequency distribution is analyzed (by the method of multiple scales) near regions in its phase diagram corresponding to synchronization to phases with a time periodic order parameter. The richest behavior is found near the tricritical point were the incoherent, stationarily synchron...

متن کامل

Stiffness Matrices for Axial and Bending Deformations of Non-Prismatic Beams with Linearly Varying Thickness

Siffness matrices for axial and bending deformations of a beam having a rectangular cross sectional area of constant width and linearly varying thickness are developed. A consistant load vector for a uniformly distributed lateral load is also calculated, using the principal of potential energy. The matrices are used to obtain numerical results for a variety of beams with non-uniform thickness t...

متن کامل

Analytic Approach to Investigation of Fluctuation and Frequency of the Oscillators with Odd and Even Nonlinearities

In this paper we examine fluctuation and frequency of the governing equation ofoscillator with odd and even nonlinearities without damping and we present a new efficientmodification of the He’s homotopy perturbation method for this equation. We applied standard andmodified homotopy perturbation method and compare them with the numerical solution (NS), also weapplied He’s Energy balance method (...

متن کامل

Exact Elasticity Solutions for Thick-Walled FG Spherical Pressure Vessels with Linearly and Exponentially Varying Properties

In this paper, exact closed-form solutions for displacement and stress components of thick-walled functionally graded (FG) spherical pressure vessels are presented. To this aim, linear variation of properties, as an important case of the known power-law function model is used to describe the FG material distribution in thickness direction. Unlike the pervious studies, the vessels can have arbit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Frontiers in Physics

سال: 2022

ISSN: ['2296-424X']

DOI: https://doi.org/10.3389/fphy.2022.934998